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Assuming that the separated pair ground state wave function of a 2N-electron system is 
already known a method is given for constructing a suitable orthogonal complement to the set 
of product functions built up from strongly orthogonal gemiuals. All terms are explicitly given 
which may have nonzero matrix element with the separated pair ground state. Using perturba- 
tional techniques a second order correction is calculated. In the ease of Be atom the magnitudes 
of contributions from terms omitted in the generalized separated pair theory are estimated 
and found to be appreciable. 

Si l'on suppose connue la fonction d'onde s paires s@ar6es pour l '6tat fondamentM d'un 
syst~me ~, 2N ~lectrons, une m6thode d6crite ici permet de eonstruire convenablement un 
compl6ment crthogonal ~ l'ensemble des fonctions produits de g6minales fortement ortho- 
gonales. Tous les termes ayant un 61gment dematrice non nul avee l'~tat fondamental song 
donn6s explicitement. Une correction du secon d ordre est caleul~e au moyen des techniques de 
perturbation. Dans le cas de l'atome de beryllium, la grandeur des contributions des termes 
omis dans la th6orie g6n4ralisge des paires s@ar4es est estim6e et trouv6e non n6gligeable. 

Unter der Annahme, dab der Grundzustand eines 2N-Elektronensystems in der Methode 
der getrennten Elektronenpaare bekanut ist, wird eine Methode angegeben, wie man den Basis- 
satz yon Produkffunktionen aus streng orthogonalen Geminalen geeignet vervollstg, ndigen 
kann. Alle mit dem Grundzustand kombinierenden Terme werden explizit angegeben. Mit 
Hilfe der St6rungsrectmnng wird eine Korrektur zweiter Ordnung berechnet. Im Falle des 
Be-Atoms wird die GrSBe der in der Theorie der getrennten Elektronenpaare veraachl~ssigten 
Beitriige abgeschiitzt und als betri~chtlich erwiesen. 

Introduction 

Al though  among  o ther  m a n y - b o d y  theories  going beyond  the  H a r t r e e - F o c k  
(HF)  scheme the  s epa ra t ed  pa i r  (SP) app roach  [1, 7, 9--12, 15, 20--22, 24, 25] 
offers the  mos t  s imple formalism,  i t  m a y  be r igh t ly  cr i t ic ized for lacking a clear  
prescr ip t ion  of  how i t  should be sys t ema t i ca l ly  comple ted  in order  to  get  the  exac t  
solut ion of  the  problem.  The m e t h o d  of  cluster  expans ion  of  wave  funct ions  
[4, 17, 26] and  the  I-IF m e t h o d  wi th  complete  configurat ion in te rac t ion  ( H F  + CCI) 
( including the  m a n y - b o d y  p e r t u r b a t i o n  theory)  [5, 14, 23] while forced to  use 
app rox ima t ions  in p rac t ica l  appl ica t ions ,  are in pr inciple  able to  give exac t  solu- 
t ions wi th in  the i r  f ramework.  Calculat ions on four-e lec t ron sys tems  (Be, LiH)  
have  shown t h a t  a t  leas t  for s t rong ly  localized sys tems the  s imple an t i symme-  
t r ized  p roduc t  of  s t rong ly  or thogonal  geminals  is a fa i r ly  good a p p r o x i m a t i o n  for 
the  g round  s t a t e  [2, 7, 16, 21, 22, 27]. I t  was these  resul ts  which sugges ted  to  the  
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author a closer investigation of the problem. The complete knowledge of a (nonde- 
generate) geminal product ground state is assumed from the beginning. First, a 
simple generalization of the SP theory is summarized, then the terms not taken 
into account by SP theory are discussed. Finally a method is given r obtain 
corrections to the SP theory by perturbational techniques. 

Generalized SP Theory 

AR~x [3] and LhWDIN [19] have shown that for N antisymmetric (spin) gemi- 
nals ~K(l,2), satisfying the strong orthogonality conditions (SC's) 

~ ( 1 , 2 )  ~ (  =0, # (t) 1,2') dl K L 

there exists always at least one complete set of orthonorma] one-electron functions 
{~0}, which can be partitioned into _hT subsets having no common elements 

~i~, ~12, ~13 . . . .  ~KI, ~g2, ~K8 . . . .  ~ I ,  ~N2, ~Z~3 . . . .  

such that each geminal can be expanded in terms of its own subset oniy: 

~pK(l,2) = ~ a~ ~x,(l) ~0Ka(2). (2) 

The functions ~g, can be chosen to be natural orbitals of the total wave function 
of the system [15]. 

The best possible geminals (i.e. the a~ and the ~K,) are defined by an infinite 
set of coupled equations which can be derived variationally by using (2) and the 
energy expression [9--11, 15, 20, 2~, 25] 

E = H(0) + ~ _[ F~(t,2) [H(i) + H(2) + r~ 1] yJK(l,2) di d2 + 

+ 2 ~ ~. j" di d2 d3 d4 r~a 1 [l -- P~a] F~(i',2) ~K(i,2) F~(3',4)~0 L(3,4) �9 (3) 
K L(W:K) 

For soIving this set of equations an iteration procedure, directly in terms of 
natural spin orbitals, has been proposed by KVTZ~L~IGG [15]. 

When the one-electron functions ~K~ are considered already known and fixed, 
it can be shown [llJ that the best possible geminals ~K(t,2) satisfy the coupled 
equations: 

QK HK(I,2) VK(I,2) = E K yJK(l,2), K = i,2 . . . .  N ,  (4) 
where 

HK(I,2) = H(I) + H(2) + r~-~ + 

+ 2 ~ , , ~  j d3 d~ [~ (~  - P~) + ~1(1 - ?~)] ~(3' ,~) ~(3,~) ,  (~) 

and the Q~ are two-electron projection operators 

QK = q~(l) qK(2), 

Introducing the second subscript I to denote the best possible geminals, the 
ground state of a 2N-electron system can be represented by the antisymmetrized 
geminal product 

[ = ~ (-- l)v P ~pn(i,2) ~ x ( 3 , 4 ) . . . ~ ( 2 N  -- l, 2N). (7) 
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For the sake of simplicity we assume, throughout this paper, that  q~11...1 is nonde- 
generate. 

This wave function takes into account N SP correlations and the corresponding 
unlinked clusters to all orders. These pair correlations are, however, not complete 
as compared to those defined by  the cluster expansion of the wave function [17, 26] 
because each of the pairs is required to lie within its own subspace. 

When the HE(l,2), containing the best possible geminals ~VLl(l,2), are regarded 
as fixed, it can be easily shown that each of the operators QK HK(i,2) is germit ian 
for all two-electron functions lying within the corresponding subspace. I t  means 
that  its eigenfunctions form a complete set of two-electron functions there. When 
the dimension of the subspaee K (i.e., the number of linearly independent one- 
electron functions ~vK~ in that  subspace) equals to nK, each of the operators 

/ nK~ . rl QK HE(I,2) has, together with ~fK1(t,2), ~2 }hnea y independent eigenfunctions 
\ / 

~K~(1,2) with Lagrangian multipliers E K~, k =  t ,2 , . . .  (2K). They can be deter- 

mined by solving 2V independent secular equations 

t I-IK - -  E K 1  I = 0,  g = 1,2 . . . .  / V ,  (8) 

where H K has the following elements 

<~2 ] HE(l,2) ] /zv> = f d l  42 ~0~(l)~rz(2) HK(I,2) ~K~(t) ~/~(2). 

The lowest roots E K~ and the corresponding eigenvectors K1 a~  are, of course, 
identical to those of the best possible geminals yJKI(I,2). The others represent 
"excited" separated pairs. 

The geminals ~g~(l,2) and ~VLZ(l,2), K ~ L, are orthogonal in the strong sense 

;~v~(1,2) ~flLt(l,2') = ; (9) di 0 

while ~Kk(l,2) and ~Kl(l,2), k # l, are automatically orthogonal in the usual sense 

~ ~o~(1,2) ~x~(1,2) = 0 (t0) dt d2 

when E K~ # E gt, or they can be orthogonalized when E K~ = E Kz. 
The antisymmetrized geminal products q~r containing one geminal from 

each of the N subspaces 

= f p~ (-- t)~ P yJli(l,2)~v~j(3,4)...~v~z(2N -- t, 2iV), ( i l )  
[(2iV) q 

when not all of the indices i, ] . . . .  l equal to l, correspond to certain excited states 
of the system. 

The best separated pair wave function ~Sse can be obtained by combining all 
linearly independent ~/l...t 

~ s r  = Y, A~...~r (i2) 
i,~ . . . .  l 

The ~sP and the corresponding energy E sP could be determined by solving the 
secular equation 

I SP - ESl,  1_- O, (13) 

20* 
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where H sP is the matr ix of the total Hamilton operator in the r representa- 
tion. 

The properties of the geminals ~Kk(i,2) greatly simplify the calculation of the 
matrix elements of H sP. Nonvanishing matrix elements arise only between 
geminal products r and r  differing in not more than two indices. In  
addition the ground state function 411...~ does not mix with singly excited configu- 
rations [12, 20]. 

Now we introduce the idea of "simple excitation" which substitutes one of the 
geminals ofr ...z by another belonging to the same subspace : ~fgk(l,2) -~ ~KZ(I,2), 
k r 1. By using it series (t2) can be arranged by  grouping the terms according to 
the minimum number of simple excitations needed to reach the actual state from 
the ground state 411...L We then obtain the series 

(z) + " '"  + ~ A(~) "~(s) �9 (i4) 

When the convergence of (14) is sufficient we can terminate at a given order and 
solve the secular equation of this truncated series. 

For systems with N large the Ray]eigh-SchrSdinger perturbation theory should 
be used [5, 12, 18, 20]. I t  can be shown that  each r is an eigenfunction of the 
following model Hamiltonian [12] 

/ / ~%f = ~ P K=I~ QK HK(2K _ t,2K) QK 

and belongs to the eigenvalue 

E ~ * + E 2 1 + . . .  + E  NZ. 

Here, ~%f is regarded as unperturbed Hamiltonian and the perturbation operator 
is H - -  5/~ . 

The first and second order corrections have the following form 

E<,  = H(0) - E/fi  , 
K<2 

K<L k,Z>I Ex<~ + ELz- E~X- ELI ' 

where 

KL ~ . f  , t Ji+kz dl  d2 d3 d4 r~-~ [i  -- PI~] ~ i ( i ' ,  3) ~KI(~, 3) ~L~(2,4) ~ f L / ( 2 , 4 )  �9 

Note that  the (n -- i ) th  and the nth order terms of (14) occur only in the nth and 
higher order energy corrections of the perturbation theory. 

There is an apparent similarity between the above method and that  of the 
HF  + CCI. I t  is, however, of purely formal character as can be easily seen. 

Introducing particle number operators ~ K  in each of the N snbspaces 

which all commute with each other and with the total  particle number operator 
~ = ~ ~/'~, it can be shown that  all the antisymmetrized geminal products of 
type ( t l )  and any arbitrary linear combination of them are eigenfunctions of all 
of the ~I/'K and belong to the eigenvaluesN~ = Ar~ . . . . .  N~v ~ 2. Since none 
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of the .C  K commutes with the Hamfltonian H containing one- and two-particle 
operators, the ~ K  and H cannot have simultaneous eigenstates. Consequently 
~bs~ cannot be exact eigenstate of the system. I t  is just the best possible approxi- 
mate wave function required to be an eigenfunction of all of the ~4 zK which belongs 
to the eigenvalues Nx = N~ . . . . .  N~v = 2. The ~bsr takes into account all 
many-particle correlations compatible with this constraint. 

Expansion ol the Wave Funetion in Terms of Eigenfnnctions of Operators ~rK 

In so far as {of} is complete the total particle number operator d r  commutes 
with the tIamiltonian and they have simultaneous eigenstates. In  this case any 
eigenstate of H can be expanded in terms of all linearly independent cigenstates 
of which belong to the eigenvalue 23/. Since the set of the ~/j...l comprises only a 
part of these eigenstates of ~ r  it should be completed with its "orthogonal comple- 
ment".  The choice of an orthogonal complement is not unique, of course. As two 
eigenstates of all of the j u g  corresponding to different partitions of the occupation 
numbers N1, N2, . . .  NN are automatically orthogonal, the orthogonal complement 
consists of all linearly independent eigenstates of d r which correspond to all 
possible partitions of the set N~, N~ . . . .  Nlv, ~ NK = 2N, except for which 
N 1 = N2 . . . . .  NN = 2. I t  should be noted that  the possible eigenvalues of the 
~rK are 0,1,2 . . . .  2N, when nK > 2N or 0,i,2 . . . .  nK, when nK ~ 2N.  To a given 

�9 

partition there exast N linearly independent eigenstates of JV" which can be 

orthogonalized*. 
For suitable building blocks we introduce the group functions VpNKk defined as 

follows 

7N~ =(N~!)-~ ~ ( -  ~)~ P ~ ~. . .~  ~ (~) ~(2)...fK~(~v~), (~s) 
P ~ < ) ~ < . . . < v  

where 

nK) ; . . . .  ~ = .•K. 1 u  K = 0,t,2 . . . .  nK; k = 1,2 . . . .  Nx ~,2 1,2,. 

Consequently the group functions belonging to different subspaees are orthogonal 

(n~) linearly independent in the strong sense. As in every subspaee there exist N~ 

NK-partiele functions they may be thought of as normalized and mutually ortho- 
gonal in the usual sense: 

~v~k~flNxz d l  d2.  . . dNK = ( } k l  �9 (16) 

I t  should be noted that  ~3rK~ = 1, when ArK = 0. Obviously the ~NK~, with 
~rK = 2, are identified with the corresponding FK~(I,2). The other group functions 
may be left temporarily unspecified. 

I t  follows from the above definitions that  the antisymmetrized product func- 
tions 

~[:tiL..t [ N I ' N 2 " " N N !  ]�89 
~ .. . .  ~ = -(2Ni! ~ ( -  t)~ P~ivt~ ~N,~J . . .  ~NNI, (]-7) 

* The completeness of set {9} implies that at least one of the nK is infinite. 
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i----1,2 . . . .  . .  , . .  , ~ N K = 2 N ,  

containing one group function from each of the N subspaces, form a complete set 
such tha t  the exact wave function of the system h ~ can be expanded in terms of 
them 

(is) 
-N'I ,-N" , . . . .  NN 4,],...Z 

(ZNK = 2N) 

The ,-ij...~x.9~lv~ ".9~v , with N 1 = N2 -- �9 �9 = NN = 2 are identical to the corre- 
sponding ~Y...~, whereas the others comprise the orthogonal complement. The 
exact energy values and the corresponding wave functions of the system are solu- 
tions of the secular equation 

[ H - -  E l  I = 0 ,  (i9) 

where matr ix  H has the following elements 

~ ~TJ'*i]...l f=[ ~ i , ] r . . . l '  ~ z ~ l i % . .  .:v:~ ~ ~ i N ~ .  . .  N ~  ~ *  d 2 .  . . d 2 N  . (20) 

In  order tha t  all of the states (17) m~y be derived from the SP ground state in 
addition to the "simple excitation" a new elementary excitation should be intro- 
duced which transfers one electron from one of the subspaces to another, changing 
two group functions simultaneously 

We call i% "electron transfer excitation". 
As H contains one- and two-particle operators, matr ix  element (20) is non- 

vanishing only when the minimum number  of elementary excitations (simple + 
electron transfer) needed to transfer one of the states to the other is not more 
than  2. 

By  using the idea of the above elementary excitations we can arrange the 
series (18) in two different ways. 

I. We can group the terms according to the minimum number  of elementary 
electron transfer excitations needed to reach the actual term from one of the func- 
tions ~Sij...l which belong naturally to the first group. We then get the series 

B(O) ~/,]...1 O C ~ B(1) ~y/(i) (T) -}- "" "JC ~ ( T )  -~ ~ B(2)~(=) . B(sN-2)  X(T)lr/(2N-2) . (21) 
i j,...1 .1 

The generalized SP theory is equivalent to truncating this series to the first group. 
The consecutive smallness of the contributions of these groups with increasing 
order is ensured when the important  ~t;~ are strongly localized spatially such tha t  
the differential overlap of every important  pair ~K~ and ~VLa, K ~ L, is negligible 
[ 1 3 ] .  In  this case the matr ix  elements between functions belonging to different 
groups are either vanishing or negligible because they contain exchange-like inte- 
grals of the following type 

f~v~  (i) ~v~a(2) r~ ~ q0Kz(i) ~L~(2) d2, K r  dl 

f~v~  (l) ~ ( 2 )  r,-~ 1 TL~(I) ~M~(2) d2, L, . (22) dl  M r  
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This grouping is reasonable only when the configurational mixing within the 
subspaces are much stronger than those between different subspaces, i.e., when 
the N pairs of the system are extremely localized spatially. 

2. We can group the terms according to the minimum number of elementary 
excitations (simple + electron transfer) needed to reach the actual term from the 
SP ground state r 

We then obtain the series: 

C(0) r  ~_ ~. 0(i) ~(1) + ~ C(~) ~(~) + . . .  + ~ 0(2N-2) ~(2~-~). (23) 

I t  treats the two kinds of elementary excitations on an equal footing. 
Both series are exact in the sense that  they are equivalent to some complete 

configuration interaction (e.g., HF  + CCI) but it ~ l l  be worth using them only 
when the convergence is suitably rapid, i.e., when the higher order terms can be 
neglected. The rate of the convergence may depend strongly on the nature of the 
system and cannot be determined without actual calculations. 

Apart from requirements (15) and (~6) the ~NK~, N/; = I, and NK > 2, are left 
unspecified so far. In principle, they may be defined as eigenfunctions of certain 
effective operators similar to (5) and can be determined by solving the corre- 
sponding secular equations. This choice may simplify the treatment to certain 
extent it would need, however, far to much labour in practical applications. 
Instead we use the simplest possible choice by identifying ~/~/~, ~ K  = i ,  with the 
corresponding ~K~ and the v-fN~, *u > 2, are represented by the following deter- 
minants 

~iVKk -~ ~/;~(1,2,...NK) = (NK!)-�89 ~ (-- t)P P ~g.(l) ~g~(2)...~K~ (NK), (24) 
P 

where 
<~<'"<v, ~,~,...~=i,2,...nK. 

In case of series (23) it is the terms of the second and third groups which may 
have nonvanishing matrix elements with r We list all of them as follows 
(displaying only the factors being changed under "excitation") : 

first group : 
one simple excitation 

~xi(1,2) -+ ~Kk(l,2), (25) 

for all K and k(k :/= 1) ; 

one electron transfer excitation 

~gl(l,2) WL~(3,4) --~ ~:~(i) ~0L~(2,3,4), (26) 
for all K, L(K r L), u and l ; 

second group: 
two simple excitations 

FKI(i,2) ~L1(3,4) -~  ~0Kk(~ ,2)  ~LZ(3,4), (27) 
for all K < L,/c and l(k, l r  ; 

one simple excitation ~- one electron transfer excitation 

yJgl(l,2) FL1(3,4) F/1(5,6) -~ TK~(I) ~L~(2,3,4) ~0Mm(5,6), (28) 
for all K, L, M(Kr  7r I and m(mr  i) ; 
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two electron transfer excitations 

~0Kl(l,2) ~L1(3,4) -~ y~Z/(l,2,3,4), (29) 
for all K, L(K ~ L) and 1 ; 

~fKl(J~,2) ~fL1(3,4) ~fM1(5,6) -~ ~Ll(~,3,4) ~Mm(2,5,6), (30) 

for M1 K, L < M(K ~ L, M), 1 and m ; 

~0K~(~,2) ~fL~(3,4) ~PM1(5,6) -* (~K.(l) q~La(3) ~fMm(2,4,5,6), (31) 
for all K < L, M(M ~ K, L), ~, 2 and m ; 

~j~(l,2) ~;~(3,4) ~fL~(5,6) ~fM~(7,8) -+ q~J~(~) ~fKk(2,3,4) q0L~(5) ~fim(6,7,8), (32) 
for all J < L, K < M (J, L ~ K, M), z, k, ~ and m.  

I t  should be emphasized that  the states of type (26) do have nonvanishing matrix 
elements with ~5~...~, because with respect to variations of this kind the anti- 
symmetrized geminal products are not self-consistent. 

For 4-electron systems (e.g. Be, LiH, etc.) there are no terms of third and 
higher order, consequently formulae (25), (26), (27) and (29) involve all possible 
configurations. 

(~aleulation of Second Order Correction to the SP Ground State 

In practical calculations the set (~) obtained by determining the best possible 
geminal product r 11...1 is a finite one of course. In this case, although the series 
(23) is also finite, it is still equivalent to a complete configuration interaction 
calculation based on (q~}. Even then, for systems with N large, it is necessary 
either to terminate the series at a certain order or to solve the corresponding 
secular equation by the perturbation theory. The partitioning method developed 
by LSWDE~ [18] is an excellent tool for this purpose because it does not need an 
unperturbed operator with the complete set of its eigenfunctions. 

Let ~/J0 be a function corresponding to the initial approximation and let 
~r,  r-- 1,2,3 . . . .  , be some excited configurations, by using the partitioning tech- 
niques, we can derive a perturbation series of Rayleigh-SchrSdinger-type [20, 29] 
which is up to second order 

Hoo § ~ ]H~ ]~ (33) 
r > 0  H o o - H r r  ' 

where 

Hrs= f ~Ir* H~sdT;, f ~[-Ir*~sdT=(~rs. 

If~b11...1 is substituted for W0 configurations (26)--(32) may give nonvanishing 
matrix elements//or. They are listed in turn as follows 

(6 {~ d~ de a3 d4 V~1(~,2) V5(3,4) H(2) ~Lg(2,3,4)-b 

+ ~ gi g2 g3 g4 ~ ( 1 , 2 )  v,~1(3,4/[r51 + 2r~ -g] ~K~(l) ~(2 ,3 ,4)+  

+ 2 tK ~ L) ~ di d2 . . . d6  ~ ( i , 2 )  V~(3,4) V~1(5,6)r~: • (34) 
M( , 

• [i -- P25] q0K~(l)~LZ(2,3,4)y~M~(5,6)~, 
) 
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di d2 d3 d4 ~0~(~,2) ~v~(3,4) r ~ [ l  - P~3] ~K~(l,2) ~LZ(3,4), (35) 

gl d2 . . .  d6 ~o~(l,2) yJ~(3,4) ~v~(5,6) r~  • 

x [1 -- P25] ~Vg~(i) ~0L/(2,3,4) ~)Mm(5,6) , (36) 

di  d2 d3 d4 ~o~(l,2) ~v~(3,4) r~ ~ WL~(i,2,3,4) , (37) 

d i d 2 . . . d 6 y ~ ( i , 2 ) y ~ x ( 3 , 4 ) ~ V ~ 1 ( 5 , 6 ) r ~ f L ~ ( l , 3 , 4 ) W M m ( 2 , 5 , 6 , )  (38) 

di d2 . . .  d6~v~(l,2)~v~(3,4)~v~x(5,6) r~-~ ~K~(i) • 

• ~L~(3) ~V~m(2,4,5,6), (39) 

di  d2 . . .  d8 ~v~(i,2) ~v~(3,4) ~ ( 5 , 6 )  ~v~(7,8) r~-~ x • 

• [ t  -- P2r q~j~(i) ~flK/~(2,3,4) ~9L2(5) ~ 9 M m ( 6 , 7 , 8 )  �9 (40) 

The diagonal matrix elements in the denominator are to be calculated by the 
expression 

r /NK\ 1 
t ~g~ + 

§ ~ NK ##Lj'did2...dNKdi'd2'. .dN~v}k(i,2, * i' . . . .  NK)  Y)LI( , 2 , . . :  NL)' • 
K < L  

. .  ' l '  2 '  ' . . . . .  x r -~ ,[Fg~( l ,2 , .  N K )  ~OL~[ . . . . .  N'L) - -  Wg~(i ,2, ~VK) ~vc~(i,2',..N~)] 

(41) 
When spin and symmetry are explicitly taken into account the number of the 

nonvanishing terms will be further reduced. Other terms involving electron 
transfers between spatially strongly separated electron groups are negligible 
because they contain integrals of the type (22). 

I t  can be easily seen that  when the SP ground state is nondegenerate, as was 
assumed at the beginning, the inequality Hrr  > H00 always holds, i.e., the deno- 
minators in (33) do not vanish. 

Matrix elements (34)--(4i) are simple algebraic expressions of the coefficients 
of the geminals a~xKk, and of the integrals 

f ~(I) H0) ~L~(i) dl, (42) 

~ ~ ( l )  ~x(2)  rT~ ~VL,(I) q0M,(2) gi g2.  (43) 

Formulae (42) and (43) can be expressed in terms of integrals of the initial, non- 
orthogonal basis functions. The explici~ calculation of the latter is necessary 
before the determination of the SP ground state. The only extra labour is the solu- 
tion of the secular Eqs. (8) in order to obtain the coefficients of excited geminals. 

Although the second term in (33) is formally a second order correction, it 
represents, in general, a much higher approximation than the corresponding term 
in the ordinary perturbation theory based on the solutions of the I-IF equations. 
Certain effects (e.g. the SP correlations) are included implicitly up to all orders. I t  
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can be shown, however, tha t  when the geminals are simple antisymmetrized pro- 
ducts of the I IF  functions of the system the first term of matr ix elements (43) is 
cancelled by others and only the ordinary doubly excited configurations contri- 
bute in the rest. 

In the case of the Be atom using W~TSO~'S results we can estimate the magni- 
tudes of contributions from configurations (26) and (29) which violate the SC's. 
These can be approximately identified with the second order perturbation theory 
corrections of the corresponding configurations in Tab. 3 of Ref. [28]. The identi- 
fication is equivalent to substituting the t IF  ground state for r The contri- 
bution from the only two electron transfer configuration (configuration 37) is less 
than - - t0  -6 a.u.; whereas that  from the one electron transfer configurations 
(configurations 8, 10, i t ,  20, 21, 35, 36) is about 4% of the total correlation energy. 
This clearly indicates that  the electron transfer configurations cannot be omitted 
even ff the pairs of the system are strongly localized. I t  may  happen, particularly 
for systems with weakly localized pairs, that  terms of higher than second order 
should also be added to Eq. (33). 

Finally we remark that  it is just configurations (25) and (26) which contribute 
to the corrections up to second order when the system is subject to a perturbation 
consisting of one-electron operators (external electric or magnetic fields). The 
first and second order corrections can still be represented as sum of contributions 
from N pairs. As a consequence of electron transfer configurations (26) a part  of 
the contribution of a given pair originates, in contrast to the SP theory, from other 
subspaces. 

Discussion 

The basic assumption of the above method is tha t  the SP correlations give the 
most significant part  of the total correlation energy and the rest can be taken as 
correction. I t  restricts the applicability to systems which consist of strongly 
localizable pairs (or, generally, of strongly localizable groups) [13]. The extent  of 
the fulfilment of this assumption can be determined only by concrete calculations. 

The crucial point of the practical application of this method is the availability 
of SP ground state wave functions for systems with N > 2. This seems to be far 
beyond the reach of present day computing facilities. Similar difficulties are 
encountered in other methods, too. The method of I tF  + CCI is apparently more 
easily accessible; it has been proved, however, much less successful than that  of 
using "configurational mixing with optimized configurations" which is very close 
to the SP theory [6]. The spatial localization and the transferability of electron 
groups in certain systems may give some help in the solution of this problem [8]. 
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